
ATS User Interfaces
1Juan Pampin, 2Oscar Pablo Di Liscia, 1William ’Pete’ Moss, 3Alex Norman

1Center for Digital Arts and Experimental Media (DXARTS), University of Washington
{pampin, petemoss}@u.washington.edu

2Carrera de Composición con Medios Electroacústicos, Universidad Nacional de Quilmes
odiliscia@unq.edu.ar

3Department of Computer Science and Engineering, University of Washington
anorman@cs.washington.edu

Abstract

ATS is a spectral modeling system based on a sinusoidal plus
critical-band noise decomposition. Originally implemented
in LISP [1], using the CLM synthesis language [2], ATS has
now been ported to C in the form of a spectral modeling li-
brary. This library, called ATSA, implements the ATS system
API which has served as foundation for the development of
the ATSH graphic user interface. Written in GTK+, ATSH not
only provides user-friendly access to the ATS analysis/synthesis
core but also graphic data editing and transformation tools.
This work has also been extended to create interfaces for two
popular synthesis languages: Csound and Pd. This paper
presents several ways of working with ATS data using a di-
versity of tools.

1 ATS Overview

ATS is a spectral modeling system developed by Juan
Pampin for representing sound as a combination of sinusoidal
trajectories and critical-band noise. The analysis engineuses
Perceptual Audio Coding (PAC) techniques such as Signal-
to-Mask Ratio (SMR) evaluation along with traditional sig-
nal processing techniques to achieve perceptually accurate
sinusoidal tracking. The system’s noise component is mod-
eled using Bark scale frequency warping to evaluate sub-band
noise energy, which is then distributed among the partials.
The analysis model consists of temporal frames, each of which
contains a set of partials having amplitude and frequency val-
ues, with optional phase information. Each frame may also
contain the psychoacoustic noise information, which consists
of 25 values representing the noise energy in each critical
band. For detailed information on the ATS system, please
visit http://www.dxarts.washington.edu/ats/

;;; transpose up an octave and
;;; expand four times keeping attack
(with-sound ()
(sin-noi-synth 0.0 crt-cs6
:frq-scale 2
:time-ptr ’(0.0 0.0 0.025 0.1 0.5 0.5 1.0 1.0)

:duration (* (ats-sound-dur crt-cs6) 4)))

Figure 1: Example of ATS synthesis with CLM

2 ATS LISP

ATS first implementation was written in LISP using the
CLM sound synthesis and processing language. This version
of ATS is still available and is probably the most powerful
interface to edit or transform data algorithmically. Spectral
data is accessible through a library of LISP functions, many
complex transformation algorithms are available which can
be extended via macros or new functions. Multiple ATS data
files can be loaded into the ATS LISP environment and hy-
bridizing operations can create new sounds by merging their
data. After being edited or transformed, data can be saved to
ATS binary files (these files can be then read by the ATSH
GUI, see Section 4) or synthesized using CLM.

3 ATSA

ATSA is a library of C functions implementing the ATS
system’s API. ATS’s peak detection, peak tracking, and psy-
choacoustic processing algorithms are available in the API, as
well as residual analysis and noise modeling tools. ATSA can
be compiled on many platforms and uses the sndlib library to
read and write many types of sound files.



Figure 2: ATSH sinusoidal display

3.1 Tracker

The main analysis algorithm of ATS, “tracker”, has been
implemented using ATSA and is distributed with it as a command-
line application. For more information about ATSA please
visit: http://www.dxarts.washington.edu/ats/

4 ATSH

ATSH is a graphical user interface for the ATS system.
ATSH has been written in GTK+ using the ATSA library API.
ATSH can display ATS information in many different ways, it
provides a user-friendly interface to the the analysis/synthesis
core of ATS as well as a variety of editing and transformation
functions. ATSH’s tools are divided into three menus: Anal-
ysis, Transformation, and Synthesis.

4.1 Analysis

The Analysis window provides easy access to ATS anal-
ysis parameters. The analysis algorithm is extremely flexible
and can be tuned in a variety of ways using up to 16 param-
eters. ATSH offers the possibility of saving and loading pa-
rameters via a binary *.apf file.

4.2 Transformation

Viewing Data Two types of ATS data can be viewed:

1. Sinusoidal: The frequency of each partial is represented
on the Y axis, time runs along the X axis. Viewing the
amplitude or SMR as a color value is possible, and can
be toggled from the View menu. Two horizontal scroll-
bars control the time view (frame location and zoom),
and two vertical scrollbars control frequency display
(location and zoom). A third vertical scrollbar sets the
contrast for the amplitude or SMR display.

Figure 3: ATSH noise display.

2. Noise: The energy value of each of the 25 Critical
Bands (in the Bark scale) is shown as a changing color
value over time. If the mouse pointer is on the image,
the frame number, time, frequency and energy values
of its position are printed on the status bar.

Selecting Data There are four ways to select spectral data:

1. Using the Select All, Unselect All, Select Even, Select
Odd, and Invert Selection presets from the Edit menu.

2. Using the mouse. This method allows for block selec-
tion (a spectral region), or single selection (an isolated
partial).

3. Using the List View window (in the View menu). The
amplitude, frequency, phase and SMR values of each
frame are represented in each column of the list. Verti-
cal (partial) and horizontal (time) selections are avail-
able in this view.

4. Using the smart selection menu item. This menu al-
lows the user to select partials in the current view using
both amplitude and/or a fix step of partial order. For
example, setting from 1 to 10, jump by 2 and Amp.
Threshold of -36 will select partials 1, 3, 5, 7 and 9
only if their amplitude (Peak or RMS) is above -36dB.

Editing Data After a selection is made its data can be edited.
This is done by applying an envelope (linear or spline) to the
amplitude or frequency values of the partials in the selected
region. The envelopes can either scale the data by multiplying
the envelope values, or offset the data by adding the envelope
values.



Figure 4: ATSH list display.

4.3 Synthesis

Several features concerning synthesis may be set with the
Synthesis/Parameters menu item. The user may scale the
overall amplitude and frequency of the original data using
scalars. Note also that synthesis may use all the data, or just
a selection (if any). It is possible also to use a time function
which allows the user to stretch the file dynamically as well
as reading it forward or backwards.

5 Csound Interface

Several Csound opcodes exist to extract and synthesize
data from ATS files. Many of these opcodes work like Richard
Karpen’s phase vocoder opcodes for Csound (pvread, pvadd,
etc.). As withpvread, most of the ATS-related opcodes take
a time pointer that is used to index data from ATS data files.
Linear interpolation is used to approximate data between anal-
ysis frames.

ATS’ Csound opcodes can be broken down into two groups:
those that act independently, and those that depend on the op-
codeatsbufread.

5.1 Independent Opcodes

atsread andatsreadnz are the most generic ATS-related
opcodes. Each of these opcodes simply read data from an
ATS file and return it for arbitrary use.atsread returns the
frequency and amplitude information of a user specified par-
tial while atsreadnz takes a noise band number and returns
the corresponding noise energy data.

atsadd uses an internal oscillator to synthesize an array
of sinusoids that are summed to produce a single a-rate out-
put. The range of partials is supplied by the user. An optional
frequency multiplier is used before synthesis to transposethe

instr 1
ktime line 0, p3, 2.2
aout1 atsaddnz ktime, “cl.ats”, 25
out aout1*10000

endin

Figure 5: Example Csound instrument usingatsaddnz opcode

frequency data. Likepvadd, atsadd provides an optional am-
plitude "gate" function (defined in a Csound f-table) that is
used to scale the amplitudes of the partials.

atsaddnz synthesizes a set of noise bands determined by
the user. Each noise band is placed in the spectrum by modu-
lating the band by a sine wave set to the corresponding critical-
band center frequency. These bands are summed to produce
a single a-rate output. An example instrument using this op-
code is shown in Figure 1.

atssinnoi synthesizes both sinusoids and noise together
using an internal oscillator. The noise energy for each band
is distributed among the partials covered by that band, and is
used to synthesize the noise component for each partial.

The final independent opcodeatsbufread has no outputs
that are directly accessible by the user.atsbufread takes data
from an ATS file and produces a table of partial amplitude
and frequency values in memory. This table can then be ac-
cessed by other opcodes. Likeatsadd, atsbufread uses a
time pointer and a list of partials to produce the table.

5.2 atsbufread Dependent Opcodes

atsinterpread takes a single frequency value and uses it
to index a table produced by anatsbufread opcode and re-
turns the corresponding amplitude value, interpolating be-
tween frames and partials. This opcode can be useful for
cross synthesizing non-ATS-derived signals with data from
ATS.

atspartialtap works almost exactly likeatsread except it
reads data from a table produced by anatsbufread. The only
argument this opcode takes is a partial number which it uses
to return frequency and amplitude data. This opcode is useful
if a user wants to operate on multiple partials separately us-
ing the same time pointer. While this can easily be achieved
with an array of atsreads all using the same time pointer, its
simplicity makes it attractive.

atscross, based onpvcross, allows a user to perform cross
synthesis using the data from two ATS files. One of these
ATS files comes from theatsbufread, the other is provided
by theatscross opcode. Data is extracted from the ATS file
indicated by theatscross opcode, and used to index the table
produced by theatsbufread opcode. This way amplitudes of
one file can be scaled by the other conserving the first file’s
frequency values. Independent amplitude scalars can be var-



ied to achieve morphing from a standardatsadd sound to a
cross-synthesized sound.

6 Pd Interface

The Pd objectatsread is used to access ATS data in real
time. It has the combined functionality of the Csound op-
codesatsread andatsreadnz, allowing for one object to out-
put all the partial and noise data for one ATS file.atsread
has three outputs: a list of frequency values, a list of corre-
sponding amplitude values, and a list of noise energy values.
These lists are always given in order from lowest partial/band
to highest partial/band. The user opens an ATS file for ac-
cess by sending the message "open cl.ats", or by supplying
the ATS file name as an argument to the object.

Theatsread object can also be made to only output noise
or sinusoidal data by using the "nosines", "nonoise", "sines"
and "noise" messages. These messages can also be given as
arguments to the object.

7 Conclusion

We have presented a variety of interfaces to work with
ATS data. The LISP interface offers algorithmic processing
of spectral data and synthesis extensions to the CLM lan-
guage. The C library ATSA implements the analysis system
API and can be used to develop spectral modeling applica-
tions. ATSH is a sophisticated graphic user interface for ATS
data. It can be used as an analysis and synthesis front-end as
well as for editing and transforming spectral data. This suite
of tools is available in open source form at:

http://www.dxarts.washington.edu/ats/ .

References

[1] Pampin, J. 1999. “ATS: a Lisp Environment for Spec-
tral Modeling” Proceedings of the 1999 Interna-
tional Computer Music Conference. Beijing: Com-
puter Music Association.

[2] Lopez-Lezcano, F., and J. Pampin. 1999. “Common Lisp
Music Update Report”Proceedings of the 1999 Inter-
national Computer Music Conference. Beijing: Com-
puter Music Association.


