ATS User Interfaces

Lyuan Pampin, 20scar Pablo Di Liscia, Iwilliam’ Pete M oss, 3Alex Norman

center for Digital Arts and Experimental Media (DXARTS), idersity of Washington
{pampin, petemoss}@u.washington.edu

2Carrera de Composicion con Medios Electroacusticos, Wsinked Nacional de Quilmes
odiliscia@ung.edu.ar

3Department of Computer Science and Engineering, Uniyeo$¥Vashington
anorman@cs.washington.edu

;;; transpose up an octave and
Abstract ;;; expand four times keeping attack
. . . . (with-sound ()
ATSis a spectral modeling system based on a sinusoidal plus (sin-noi-synth 0.0 crt-cs6

critical-band noise decomposition. Originally implemented :frg-scale 2

in LISP [1], using the CLM synthesis language[2], ATShas ~ ‘ime-ptr ’(0.0 0.0 0.025 0.1 0.5 0.5 1.0 1.0)

now been ported to C in the form of a spectral modeling li- ~ ‘duration (* (ats-sound-dur crt-cs6) 4)))

brary. This library, called ATSA, i_mplements the ATS system Figure 1: Example of ATS synthesis with CLM
API which has served as foundation for the development of

the ATSH graphic user interface. Writtenin GTK+, ATSH not

only providesuser-friendly accessto the ATSanalysigsynthess 2 ATSLISP

core but also graphic data editing and transformation tools.

Thiswork has also been extended to create interfaces for two ATS first implementation was written in LISP using the
popular synthesis languages: Csound and Pd. This paper CLM sound synthesis and processing language. This version
presents several ways of working with ATS data using a di- of ATS is still available and is probably the most powerful
versity of tools. interface to edit or transform data algorithmically. Spealct

data is accessible through a library of LISP functions, many
. complex transformation algorithms are available which can
1 ATSOverview be extended via macros or new functions. Multiple ATS data
files can be loaded into the ATS LISP environment and hy-
ATS is a spectral modeling system developed by Juamridizing operations can create new sounds by merging their
Pampin for representing sound as a combination of sinusoid@ata. After being edited or transformed, data can be saved to
trajectories and critical-band noise. The analysis engges ATS binary files (these files can be then read by the ATSH
Perceptual Audio Coding (PAC) techniques such as Signalgul, see Section 4) or synthesized using CLM.
to-Mask Ratio (SMR) evaluation along with traditional sig-
nal processing techniques to achieve perceptually aeurat
sinusoidal tracking. The system’s noise component is mod3 ATSA
eled using Bark scale frequency warping to evaluate sulo-ban
noise energy, which is then distributed among the partials. ATSA is a library of C functions implementing the ATS
The analysis model consists of temporal frames, each ofwhi®ystem’s API. ATS's peak detection, peak tracking, and psy-
contains a set of partials having amplitude and frequenky va choacoustic processing algorithms are available in the &¢I
ues, with optional phase information. Each frame may alsdvell as residual analysis and noise modeling tools. ATSA can
contain the psychoacoustic noise information, which cstasi e compiled on many platforms and uses the sndlib library to
of 25 values representing the noise energy in each criticdlead and write many types of sound files.
band. For detailed information on the ATS system, please
visit http://www.dxarts.washington.edu/ats/

[alala) (3] ATSH = fUsirs (juanf AT SEAMEIS fjon sty [aXalal

e R | ety Trwpdemien, Syl Vit |

N ATEH ~ fUlarsuan ATS SSEAMLS fjon at

B PR =30 1 T pege)

BAND +231 3550 20050 b |
BNERGY-D 0300

Figure 2: ATSH sinusoidal display

3.1 Tracker 2.

The main analysis algorithm of ATS, “tracker”, has been
implemented using ATSA and is distributed with it as a comdian
line application. For more information about ATSA please
visit: http://www.dxarts.washington.edu/ats/

Figure 3: ATSH noise display.

Noise: The energy value of each of the 25 Critical
Bands (in the Bark scale) is shown as a changing color
value over time. If the mouse pointer is on the image,
the frame number, time, frequency and energy values
of its position are printed on the status bar.

Selecting Data There are four ways to select spectral data:

4 ATSH

ATSH is a graphical user interface for the ATS system.
ATSH has been written in GTK+ using the ATSA library API.
ATSH can display ATS information in many different ways, it
provides a user-friendly interface to the the analysisfsysis
core of ATS as well as a variety of editing and transformation
functions. ATSH'’s tools are divided into three menus: Anal- 3
ysis, Transformation, and Synthesis.

1.

4.1 Analysis

The Analysis window provides easy access to ATS anal-

ysis parameters. The analysis algorithm is extremely flexib 4.

and can be tuned in a variety of ways using up to 16 param-
eters. ATSH offers the possibility of saving and loading pa-
rameters via a binary *.apf file.

4.2 Transformation

Viewing Data Two types of ATS data can be viewed:

Using the Select All, Unselect All, Select Even, Select
Odd, and Invert Selection presets from the Edit menu.

. Using the mouse. This method allows for block selec-

tion (a spectral region), or single selection (an isolated
partial).

. Using the List View window (in the View menu). The

amplitude, frequency, phase and SMR values of each
frame are represented in each column of the list. Verti-
cal (partial) and horizontal (time) selections are avail-

able in this view.

Using the smart selection menu item. This menu al-
lows the user to select partials in the current view using
both amplitude and/or a fix step of partial order. For
example, setting from 1 to 10, jump by 2 and Amp.
Threshold of -36 will select partials 1, 3, 5, 7 and 9
only if their amplitude (Peak or RMS) is above -36dB.

EditingData After a selection is made its data can be edited.
1. Snusoidal: The frequency of each partial is representedrhis is done by applying an envelope (linear or spline) to the
on the Y axis, time runs along the X axis. Viewing the amplitude or frequency values of the partials in the setkcte
amplitude or SMR as a color value is possible, and carntegion. The envelopes can either scale the data by multiglyi
be toggled from the View menu. Two horizontal scroll- the envelope values, or offset the data by adding the engelop
bars control the time view (frame location and zoom),yalues.

and two vertical scrollbars control frequency display
(location and zoom). A third vertical scrollbar sets the
contrast for the amplitude or SMR display.

Cugmrent frame . 98 ([from frama = 111 o frame = 136) instr 1

ktime line 0, p3, 2.2

Cumrant time 0.370s 1o 0.360s aoutl atsaddnz ktime, “cl.ats”, 25

=t A = out aout1*10000

Frnm-Nn-.-.ri Tn-an[Radraw| endin

Partiale _ [Ampiiude [Frequency |SmR Phase |E Figure 5: Example Csound instrument usatgaddnz opcode

003330 £61.300
000661 5 3
016340 i
000606 1046005
0oo7y 1176.952
0000000 1202608
.ooooo 1211473
016610 1306413

1677812

-2 65T

frequency data. Likpvadd, atsadd provides an optional am-
plitude "gate" function (defined in a Csound f-table) that is
used to scale the amplitudes of the partials.

atsaddnz synthesizes a set of noise bands determined by
the user. Each noise band is placed in the spectrum by modu-
lating the band by a sine wave set to the correspondingaiitic
band center frequency. These bands are summed to produce
a single a-rate output. An example instrument using this op-
code is shown in Figure 1.
4.3 Synthesis atssinnoi synthesizes both sinusoids and noise together

using an internal oscillator. The noise energy for each band

Several features concerning synthesis may be set with thig distributed among the partials covered by that band, &nd i
Synthesis/Parameters menu item. The user may scale thged to synthesize the noise component for each partial.
overall amplitude and frequency of the original data using The final independent opcoaésbufread has no outputs
scalars. Note also that synthesis may use all the data, tor jughat are directly accessible by the usasbufread takes data
a selection (if any). It is possible also to use a time furrctio from an ATS file and produces a table of partial amplitude
which allows the user to stretch the file dynamically as welland frequency values in memory. This table can then be ac-
as reading it forward or backwards. cessed by other opcodes. Likksadd, atsbufread uses a
time pointer and a list of partials to produce the table.

-£.95475
161771
-1.50250

-2¥3.79333

naonzzy

Figure 4: ATSH list display.

5 Csound Interface
5.2 atsbufread Dependent Opcodes

Several Csound opcodes exist to extract and synthesize
data from ATS files. Many of these opcodes work like Richarq0 i
Karpen’s phase vocoder opcodes for Csoywiéad, pvadd,
etc.). As withpvread, most of the ATS-related opcodes take
a time pointer that is used to index data from ATS data files
Linear interpolation is used to approximate data betweatt an
ysis frames. . . :

ATS' Csound opcodes can be broken down into two grouplse_aatsparualtap works almost exactly likatsread except it

) ds data from a table produced byatsbufread. The only
::f:)%seea:z;'jsggdependently, andthose that depend on the Ogrgument this opcode takes is a partial number which it uses

to return frequency and amplitude data. This opcode is usefu
if a user wants to operate on multiple partials separately us
5.1 Independent Opcodes ing the same time pointer. While this can easily be achieved

atsread andatsreadnz are the most generic ATS-related W'th an array of a_ltsreads_ all using the same time pointer, its
simplicity makes it attractive.

opcodes. Each of these opcodes simply read data from an
atscross, based ompvcr oss, allows a user to perform cross

ATS file and return it for arbitrary useatsread returns the . . !
frequency and amplitude information of a user specified par_synthg&s using the data from two ATS files. _One o.f these
ATS files comes from thatsbufread, the other is provided

:'r?é \év:rlisat;sne;(:]nzntgil;zsezri]:rmsz:tgnd number and returnsby theatscross opcode. Data is extracted from the ATS file
P 9 9y ' indicated by theatscross opcode, and used to index the table

gtsadd_ uses an internal oscillator to synth_e3|ze an array?roduced by thetsbufread opcode. This way amplitudes of
of sinusoids that are summed to produce a single a-rate out- ~ " . e
one file can be scaled by the other conserving the first file’s

put. The range of partials is supplied by the user. An OIOtionafre uency values. Independent amplitude scalars can be var
frequency multiplier is used before synthesis to transpiose q Y ' P P

atsinterpread takes a single frequency value and uses it
ndex a table produced by atsbufread opcode and re-
turns the corresponding amplitude value, interpolating be
tween frames and partials. This opcode can be useful for
cross synthesizing non-ATS-derived signals with data from
ATS.

ied to achieve morphing from a standat$add sound to a
cross-synthesized sound.

6 Pd Interface

The Pd objechtsread is used to access ATS data in real
time. It has the combined functionality of the Csound op-
codesatsread andatsreadnz, allowing for one object to out-
put all the partial and noise data for one ATS filatsread
has three outputs: a list of frequency values, a list of ecorre
sponding amplitude values, and a list of noise energy values
These lists are always given in order from lowest partiaéba
to highest partial/band. The user opens an ATS file for ac-
cess by sending the message "open cl.ats", or by supplying
the ATS file name as an argument to the object.

Theatsread object can also be made to only output noise
or sinusoidal data by using the "nosines”, "nonoise", "sine
and "noise" messages. These messages can also be given as
arguments to the object.

7 Conclusion

We have presented a variety of interfaces to work with
ATS data. The LISP interface offers algorithmic processing
of spectral data and synthesis extensions to the CLM lan-
guage. The C library ATSA implements the analysis system
API and can be used to develop spectral modeling applica-
tions. ATSH is a sophisticated graphic user interface foBAT
data. It can be used as an analysis and synthesis front-end as
well as for editing and transforming spectral data. Thisesui
of tools is available in open source form at:

http://www.dxarts.washington.edu/ats/ .

References

[1] Pampin, J. 1999. “ATS: a Lisp Environment for Spec-
tral Modeling” Proceedings of the 1999 Interna-
tional Computer Music Conference. Beijing: Com-
puter Music Association.

[2] Lopez-Lezcano, F., and J. Pampin. 1999. “Common Lisp
Music Update ReportProceedings of the 1999 Inter-
national Computer Music Conference. Beijing: Com-
puter Music Association.

