
DATA JOCKEY, A TOOL FOR META-DATA ENHANCED DIGITAL DJING
AND ACTIVE LISTENING

Alex Norman and Xavier Amatriain
University of California, Santa Barbara

Media Arts and Technology

ABSTRACT

Data Jockey is a free and open-source digital DJ soft-
ware system that allows users to mix several audio works
based on content features, such as average brightness and
average harmonicity, while syncing the works to a com-
mon clock. This software allows users to search through
an audio database using audio content descriptors as search
criteria.

These features help users explore their ever-expanding
digital audio collections in new ways. Providing users
with access to content descriptors will provoke interest-
ing juxtapositions of different works and the evolution of
content features over mixes. Access to these descriptors
will help users find new meaning in these audio works and
their combination.

1. INTRODUCTION

The increasing capacity and decreasing cost of digital stor-
age make it easier than ever to amass large collections of
digital audio works. While some people may be satis-
fied with the passive entertainment their media libraries
provide, others seek more involved ways to interact with
these collections.

One such option is to use these works as material for
new creative expression, mixing works together and juxta-
posing them to create something new, just as a disc jockey
does with phonograph records. This is the basic function
of Data Jockey, a free and open-source software (FOSS)
system that allows users to interact with pre-recorded au-
dio works based on their content and mix them while lock-
ing the playback tempo of each piece to a common clock.
This is commonly known as digital DJing. While there
are other software tools that allow users to DJ, none focus
as heavily on search and comparison between audio works
using audio descriptors.

By providing its users with access to content descrip-
tors, Data Jockey encourages them to search for interest-
ing combinations of audio works that they might not have
found otherwise. It also allows users to quickly search in
a large collection of audio recordings for works that fit a
specific criterion, encouraging exploration and providing
ways to create more meaningful playlists. We expect that
access to content descriptors will help users learn about
what it is, specifically, that they like about these works

and their combination, and, in turn, create more interest-
ing mixes.

1.1. Related Tools

A popular example of a digital DJ system that has con-
tributed to the inspiration for Data Jockey is Ableton’s
Live [1]. Live is a commercial software product that al-
lows users to mix pre-recorded audio. While Live is a very
powerful performance and composition tool, it lacks the
rich database central to Data Jockey’s feature set. Live an-
alyzes audio works for beat information but does not pro-
vide any additional feature analysis data for users; Data
Jockey extracts beat information as well as other content
feature information like “average brightness” and “aver-
age harmonicity,” which it then associates with works
through content descriptors.

In addition to providing a more powerful content man-
agement and retrieval system than Live, Data Jockey’s
users have more freedom in their work since they can
modify the system as much as they please because Data
Jockey is a FOSS system.

One example of a FOSS digital DJ system is Mixxx.
Mixxx provides a virtual disc jockey interface that is much
like a traditional disk jockey setup. It has automatic tempo
matching capabilities but also allows users to beat match
works manually [7].

There are other systems which attempt to mimic the
traditional disc jockey experience through haptic interfaces.
One example is D’Groove [4], a system which gives users
a physical interface that employs an actual phonograph
record, and a software system that helps to beat match and
mix digital audio files. These systems essentially allow
users to replace their record collection with a library of
digital music while attempting to retain the historical in-
terface and experience. While Data Jockey would benefit
from a haptic interface of some sort, it has a more hands-
off approach to audio beat matching, allowing users to fo-
cus on exploring new territory that would not be possible
otherwise.

2. SYSTEM OVERVIEW

Data Jockey consists of a database of audio and meta-data
for that audio, scripts to import data into the database, and
a graphical performance interface written using a combi-
nation of the Ruby programming language and C++. It



is being developed using Linux but with cross-platform
compatibility in mind.

2.1. Database

Data Jockey’s database provides a simple way of organiz-
ing and retrieving data from a large collection of audio
works and audio meta-data. It also provides the ability
to relate included audio works in a number of ways. It
organizes works by title, artist, and album and also al-
lows works to be associated with “tags” and “descriptors,”
which provide data to use in content comparisons as well
as additional avenues for content retrieval.

2.1.1. Tags

Tags are typed labels that can be applied to works. Some
tag types are “genre,” “lyrical theme” and “mood”. As
an example, a work might be tagged with a “genre” tag
that has the value “punk.” Tag data can be extracted from
audio file meta-data, like the ID3 tags in MP3 files, or can
be manually added by a user. Users can also add their
own tag types. These tags give users ways to associate
multiple works and search for content beyond specifying
title, artist or album. Extensible tags give users a way to
organize their content using whichever label types they
find useful.

2.1.2. Descriptors

Descriptors are much like tags but, instead of text, they
have numerical values. Descriptors also expand the search
space available to Data Jockey users, helping them ex-
plore their music library in ways they would not have
otherwise. Descriptor values generally come from anal-
ysis of the content which they describe but can also be
added manually. Instead of simply finding works by name,
artist or album, descriptors allow users to search for works
based on features of the works themselves.

The three descriptors currently provided are “average
brightness,” “median tempo” and “average harmonicity;”
these can be input by the user manually or can be com-
puted through audio feature analysis. As is the case with
tags, users can add their own descriptor types.

These descriptors can be used in a number of ways. For
instance, a user might decide that over time their play-list
should get brighter yet decrease in tempo and should pre-
fer tracks that have a relatively high harmonicity value.
A search that follows this user-defined envelope would
trace a path through works that are brighter than the tracks
currently playing, that are above a specified harmonicity
threshold and are slower in tempo than the current global
tempo value.

This envelope could be constrained further by includ-
ing tag data as well, for instance only allowing “techno”
songs to be chosen for the mix. These user-defined con-
straints define a path to search through the database and
allow for high-level envelopes on the features of a mix.

This path is similar to those created through automatic
play-list generation attempts, as described in [3] and [8].
These play-list generators generally keep meta-data out
of view of users, providing high level controls like per-
centage of songs using brass instruments, or simply track-
ing user’s habits and generating play-lists based on those
habits [3] [8]. In contrast to these automatic play-list gen-
erators, users of Data Jockey have access to all of the de-
scriptors, which they can aggregate themselves in order to
create their own high-level controls.

3. TEMPO TRACKING AND
SYNCHRONIZATION

The fundamental feature that Data Jockey requires of its
audio data is beat location information. With this beat
location information Data Jockey can sync audio works
to a clock and, in turn, play works in sync with each other.

3.1. Tempo Synchronous Playback

Synchronizing audio works to a common clock while mix-
ing is often desirable and is a main feature of Data Jockey.
Data Jockey syncs songs using their pre-calculated beat
location information. Each playback synthesizer has both
a buffer of audio data and a buffer of beat location time-
points. The synthesizers read through their beat location
buffers at a common rate given by the tempo controller,
synchronizing their beat locations to the pulse of the tempo
controller and interpolating values in-between pulses us-
ing an audio-rate ramp provided by the tempo controller.

The values read from the beat location buffers are used
as time pointers for reading data out of the audio buffers,
which is eventually sent to the output to be played. While
the beat buffer information is read at a common rate, the
data that is retrieved from the beat location buffers is u-
nique to its associated audio work. The result is that each
audio buffer is played back at a rate which synchronizes
its beat locations to the pulses of the tempo controller. If
the tempo controller’s pulse output rate is not the same as
an audio work’s original tempo the pitch of that work will
be scaled as a side effect of scaling its tempo.

While it would be nice to separate the pitch and play-
back tempo, the current implementation is quite usable.
In fact, coupling playback tempo and pitch might be de-
sirable for some as it is inherent in mixing phonograph
records. An approach to this decoupling is discussed in
the “Future Work” section.

3.2. Tempo Extraction

Data Jockey uses BeatRoot, a beat tracking software ap-
plication, to extract the beat location information from au-
dio recordings. BeatRoot, winner of the MIREX 2006 au-
dio beat tracking competition, analyzes audio recordings
and returns the beat location information in the form of a
text file with beat times indicated in seconds. BeatRoot’s
inner workings are described in detail in [5].



While the data extracted by BeatRoot has proven to be
reliable for most songs, there is some jitter in the distances
between beats. This jitter is especially apparent with Data
Jockey because Data Jockey’s current time stretching tech-
nique changes the pitch of audio works, so the jitter results
in unnatural pitch changes during playback. In order to
combat this jitter, Data Jockey applies a moving average
filter to the distances between beats. This filtering oper-
ation removes these pitch change side-effects during sec-
tions of audio that have stable tempos.

4. PERFORMANCE INTERFACE

The performance interface consists of a graphical user in-
terface (GUI) and an audio playback back-end written in
C++. The GUI uses the Gimp Toolkit (Gtk+), a cross plat-
form GUI toolkit.

4.1. GUI

The GUI is written in Ruby and is connected to an audio
playback back-end written in C++ through a SWIG inter-
face. The SWIG interface provides the “glue” needed to
connect these two components. SWIG is a tool that auto-
matically generates interfaces between C/C++ programs
and a number of other, generally higher level, program-
ming languages [9]. The use of two programming lan-
guages, while increasing the complexity of the design, al-
lows Data Jockey to take advantage of both the simplicity
of database and GUI programming with Ruby and C++’s
speed, which is needed for “real-time” audio program-
ming. The GUI is made up of a mixer view and a database
view.

The mixer view is similar to a standard hardware audio
mixer, consisting of several mixer channels and one mas-
ter volume control. It also includes controls for manipu-
lating the global playback tempo. Each mixer channel has
controls to manipulate the volume, equalization, output
destination and playback position of an associated audio
clip (usually a full song). Text above each mixer channel
indicates which audio clip the channel is currently associ-
ated with (see Figure 1).

The database view provides users with a view into their
library of audio and audio meta-data. This view also pro-
vides users with the ability to select works to load into a
mixer channel, including them in the current mix. Users
can use this view to browse through their library; they
can sort by artist, album, title or by one of the descrip-
tor values (see Figure 1). The more complicated search
constraints discussed in the database section are achieved
here through an “advanced search” dialog box.

4.2. Audio back-end

The audio playback back-end is written in C++ because
Ruby is not suited for “real-time” audio programming.

The audio back-end uses JACK for audio output. JACK
is an audio application programming interface (API) which
provides applications with low-latency audio input and

output, and also gives users the ability to easily route au-
dio between applications themselves [6]. By making Data
Jockey a JACK client, we allow users to use other appli-
cations to affect or record the results of their performance.

The playback system consists of three main compo-
nents: a tempo controller, a collection of audio playback
synthesizers, and a master volume control. The tempo
controller sends out triggers at regular intervals (an im-
pulse train) and an audio rate ramp that the playback syn-
thesizers use to synchronize their audio playback.

Each playback synthesizer has an associated audio buff-
er as well as a buffer that includes the locations of the
beats. The synthesizers use their beat location buffer in
order to synchronize the playback of their associated au-
dio buffers with the tempo controller. The synthesizers
accept commands which allow the user to scale the vol-
ume of the audio output, reset the playback position, se-
lect which output (master or cue) to send the audio to and
set the equalization of the audio. If the audio is sent to the
master output it is combined with all the other synthesiz-
ers’ master outputs and scaled by a master volume, then it
is finally sent to the sound-card. Otherwise, the audio is
summed with all of the synthesizers’ cue outputs and sent
to a different audio output which is intended to be used
to preview the result of adding elements to a mix without
sending them to the main output.

In addition to synchronizing audio within Data Jockey,
data from the tempo controller is sent to a JACK audio
output. Other applications can use this data to sync them-
selves with Data Jockey.

A nice side effect of using SWIG is that the audio back-
end could be used with other programming languages like
Python or Ocaml. Users might decide to use the audio
back-end exclusively within a non-graphical scripting in-
terface, or with a custom graphical interface of their own.

5. CONCLUSIONS AND FUTURE WORK

Already in its early stages of development, Data Jockey is
quite useful. Its use of content “tags” and “descriptors”
sets it apart from existing “digital DJ” applications and
allows users to explore their music library in new ways.
We envision access to this content meta-data encouraging
users to approach their own work in new ways as well,
comparing and contrasting source content and using the
results of these comparisons to create mixes that are dy-
namic in structure. We also hope that through working
with this meta-data, users will be able to qualify what it is
about a collection of works that makes them mixable.

Many additions are planned for Data Jockey including:
audio and audio meta-data visualization and manipulation
capabilities, performance recording, improved search ca-
pabilities, audio segment looping, time stretching decou-
pled from pitch scaling and additional audio feature ex-
traction analysis.

There are many feature extraction techniques that may
be useful for exploration within Data Jockey. First and
foremost, phase vocoder analysis accompanied by onset



Figure 1. Data Jockey Performance Interface

detection would allow for time stretching to be decoupled
from pitch scaling during playback as discussed in [2].
Pitch information combined with this separation of pitch
and tempo would allow users to tune works to a common
key, thus key matching works in addition to beat matching
them. Spectral information would allow users to search
for works which could fill the spectral gaps present in their
current mix, to make the output fit a desired spectral en-
velope. Analyzing the space that the combination of these
extracted features creates could help segment the audio
into sections, like introduction, verse, etc., as well as pro-
viding new search criteria. Finally this combined informa-
tion, as well as information about a user’s habits in mix-
ing, derived through performance recording, could help
expose what about audio works makes them mix well.

6. REFERENCES

[1] Ableton Homepage. http://www.ableton.com/,
1 May 2007.

[2] X. Amatriain, J. Bonada, A.Loscos, and X.
Serra, ”Spectral Processing”, Udo Zlzer (Ed.),
DAFX: Digital Audio Effects, John Wiley &
Sons, Inc., New York, NY USA, 2002, pp 429-
435.

[3] A. Andric, G. Haus, ”Automatic playlist gen-
eration based on tracking user’s listening

habits”, Multimedia Tools and Applications,
Volume 29, Issue 2, Kluwer Academic Pub-
lishers, Hingham, MA USA, 2006, pp. 127-
151.

[4] T. Beamish, K. Maclean, S. Fels, ”Manipulat-
ing music: multimodal interaction for DJs”,
Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, Vienna,
Austria, 2004, pp. 327-334.

[5] S. Dixon, ”An Interactive Beat Tracking and
Visualisation System”, Proceedings of the In-
ternational Computer Music Conference, Ha-
vana, Cuba, 2001, pp 215-218.

[6] JACK Homepage http://jackaudio.org/, 29
June 2007.

[7] Mixxx Homepage http://mixxx.sourceforge.
net, 29 June 2007.

[8] F. Pachet, P. Roy, D. Cazaly, ”A Combinato-
rial Approach to Content-Based Music Selec-
tion”, IEEE MultiMedia, Volume 7 , Issue 1,
IEEE Computer Society Press, Los Alamitos,
CA USA, 2000, pp. 44-51.

[9] Swig Homepage. http://www.swig.org/, 29
June 2007.


